Abstract
Rootlets
were sampled in the mountain rain forest of southern Ecuador from
individual trees of 115 species in order to investigate the
mycorrhizal state. The results show that the arbuscular
mycorrhization predominates and is independent from the soil type
supporting the high diversity of trees on mineral soil in the ravines
as well as on the thick humus layer on the mountain ridge. The
Melastomatacee Graffenrieda emarginata is associated whith
arbuscular mycorrhizas and additionally forms ectomycorrhizas
regularly with an ascomycete closely related to the ericoid
mycorrhizal fungus Hymenoscyphus ericae. The latter was shown
to mobilize organically bound nutrients. G. emarginata is the
most frequent tree on the mountain ridges where root formation is
restricted to the pure organic soil layer. The ectomycorrhizal state
is most probably improving nutrient uptake from the humus layer and
thus supporting the competitiveness of this tree species. One Guapira
sp. and one Neea sp. (Nyctaginaceae) form ectomycorrhizas with
one thelephoraceen basidiomycete only. Guapira and this Neea
species root in the mineral soil of the nutrient rich slopes and the
ecological implication of the ectomycorrhiza is estimated to be low.
Another Neea species forms typical ectomycorrhizas with
several basidiomycetes and one ascomycete quite abundantly. This Neea
occurs on the border of the primary forest, along old roadsides and
the main river slopes demonstrating an improved stress resistance by
regular ectomycorrhiza formation.
Keywords:
arbuscular mycorrhiza, ectomycorrhiza, humus, neotropics,
Hymenoscyphus
Resumen
Raicillas
de 115 especies arbóreas del bosque montano lluvioso en el Sur
de Ecuador fueron muestreadas en orden a investigar su estado de
micorrización. Los resultados muestran el dominio de la
micorrización arbuscular siendo independiente al tipo de suelo
que soporta la alta diversidad de árboles en el suelo mineral
en las quebradas, así como también en la gruesa capa de
humus en la cima de las cordilleras. La Melastomatacee Graffenrieda
emarginata es asociada con arbuscular micorrizas, y
adicionalmente forma ectomicorrizas regularmente con un ascomycete
estrechamente relacionado a el hongo ericoid micorrízico
Hymenoscyphus ericae. Este último fue demostrado
movilizar nutrientes orgánicamente unidos. G. emarginata
es el árbol más frecuente en la cima de las montañas
donde la formación de las raíces es restringida a la
capa de suelo orgánico. El estado de micorrización
probablemente fomenta la absorción de nutrientes desde de la
capa de humus y así mejora la competencia de estas tres
especies. Una Guapira sp. y una Neea sp.
(Nyctaginaceae) forman ectomicorrizas solamente con un teleforaceous
basidiomiceto. La implicación ecológica de la
ectomicorriza en las raíces de Guapira sp. y Neea
sp. en el suelo mineral en pendientes ricas en nutrientes es
estimadamente baja. Otra especie de Neea forma típicas
ectomicorrizas con varios basidiomicetos y un ascomiceto poco
abundante. Esta Neea ocurre en el límite del bosque
primario, a lo largo de las orillas de los caminos y en las
principales riberas de los ríos demostrando un mejoramiento a
la resistencia a estrés mediante la regular formación
de ectomicorriza.
Palabras
clave: micorriza arbuscular, ectomicorriza, humus, neotropico,
Hymenoscyphus
Introduction
The mycorrhizal state of trees largely influences their competitiveness and their integration or disintegration in the forest community. While symbiotic root-associations with glomeromycete fungi (arbuscular mycorrhiza) support a community of high diversity, symbiotic associations with basidio- or ascomycete fungi (ectomycorrhiza) promote monodominant forests (Kottke 2002 and literature therein). The arbuscular mycorrhiza is the most ancient type (about 400 MA; Taylor et al. 1995) and is associated with more than 80% of plant species (Smith & Read 1997). The arbuscular mycorrhiza was replaced several times in a restricted number of plant species by the ectomycorrhial association, the ericoid or the orchid mycorrhiza, respectively. It was hypothesized that the change from glomeromycete to asco- or basidiomycete associations was promoted by the seasonal climate connected to humus accumulation and minimization of water-soluble nutrients especially nitrogen (Read & Perez-Morena 1993). The predominance of ectomycorrhizal forests in the northern and of arbuscular mycorrhizal forests in the southern hemisphere could thus be partly explained (Read 1991). Our results show that the predominating arbuscular mycorrhization in the tropical mountain forest of southern Ecuador is independent of the amount of humus but is related to phosphate limitation. The investigations also point out that the replacement of arbuscular mycorrhiza by ectomycorrhiza developed gradually in the tropics starting with low ecological significance, then promoting few species in the primary forest, and ending up with the ectomycorrhiza predominance in some secondary forest species.
Materials and Methods
The study site is located on the eastern slope of the Cordillera El Consuelo in the Andes of southern Ecuador. The territory of about 1000 ha belongs to the Reserva Biológica San Francisco, a protected area bordering the north of Podocarpus Nationalpark, half way between Loja and Zamora, Loja-Chinchipe province (3°58´ S, 79°04´ W). Fifteen permanent plots of 400 m2 each were established between 1850 and 2600 m, along the mountain ridge and on the steep slopes of the ravine in the primary mountain rain forest, and most of the tree species were identified (Homeier et al. 2002). Fine roots were sampled from 115 tree species and the mycorrhizal state was analyzed by conventional methods (Haug and Pritsch 1992; Kottke et al.2004). Arbuscular and ectomycorrhizal fungi were identified from DNA-sequences (Haug 2002).
Results and Discussion
Nearly all the 115 investigated tree species were found to form arbuscular mycorrhizas (Tab. 1, Kottke et al. 2004). The results substantiate the hypothesis that the highly diverse tropical forests harbor arbuscular mycorrhizas (Janos 1987). This mycorrhizal association may be considered as one important reason for the high diversity of the community because the rather unspecific and multigenomic symbiotic fungi promote diverse seedlings and adult plants (Smith & Read 1997, Kuhn et al. 2001; Kottke 2002). The investigations also showed that the arbuscular mycorrhizal state is not restricted to roots in the mineral soil as was hypothesized by Read (1993), but is the same well developed in the pure humus layers in the tropical mountain rain forest (Kottke et al. 2004). Phosphate limitation was observed in the humus layer and is mainly due to fact that phosphate is bound in organic form not available for plant roots (Wilcke et al. 2001, 2002 and personal communication). Arbuscular mycorrhizal fungi are well known to mobilize P from the organic fraction improving the P-nutrition of plants significantly (Smith & Read 1997). Arbuscular mycorrhizas are thus favorable for trees on this stand.
The Melastomatacee Graffenrieda emarginata is regularly found with arbuscular mycorrhizas, but additionally forms ectomycorrhizas with an ascomycete closely related to the ericoid mycorrhizal fungus Hymenoscyphus ericae (Haug et al. 2004). The fungus was shown to mobilize organically bound nutrients (Read & Perez-Morena 2003 and literature therein). G. emarginata is the most frequent tree on the mountain ridges where root formation is restricted to the pure organic soil layer. It appears obvious that the ectomycorrhizal state improves nutrient uptake from the humus layer and thus supports competitiveness of this tree species (Haug et al. 2004).
Three Nyctaginaceae were found to form ectomycorrhizas, two Neea species and one Guapira species. On Guapira and on one of the Neea species a variable percentage of rootlets displayed a special kind of ectomycorrhiza. The ectomycorrhiza development occurs only on the proximal part of the fine, but long rootlets. Only one fungal species, a Thelephoracee forms the mycorrhizas (Haug et al. submitted). The Guapira and this Neea species root in the mineral soil of the nutrient rich slopes of the ravines and the ecological implication of the ectomycorrhiza is estimated to be low. Another Neea species forms typical ectomycorrhizas with all the absorptive rootlets. The bushy tree is associated with several basidiomycetes and one ascomycte (Haug et al. submitted). This Neea species occurs on the border of the primary mountain forest, along old roadsides and along the main river slopes in disturbed places where it forms a superficial, dense mat of ectomycorrhizal roots. The ectomycorrhizal state most probably improves drought resistance and competitiveness against Pteridium arachnoideum, Chusquea spp. and other grasses.
The investigation revealed that the mycorrhizal state of a tree poses a selective ecological pressure that cannot be ignored when species are selected for tree plantations and regeneration of tropical mountain forests. The mycorrhizal state also determines the root system development (Brundrett 2002). Guapira sp., as most of the other arbuscular mycorrhizal trees, has regularly branched, long fine roots with many root hairs that are only suppressed in the proximal part of roots that are transformed into ectomycorrhizas. G. emarginata displays an irregularly branched root system with rather short fine roots that have no root hairs (Haug et al. 2004). The ectomycorrhizal Neea species forms densely branched mats of short roots that are typical for ectomycorrhizal trees (Feil et al. 1988).
No other Melastomataceae was so far shown to form ectomycorrhizas with the ascomycete related to H. ericae. However, this fungal aggregate is spread world wide and associated with several ectomycorrhizal trees, ericaceous plants and hepatics occurring on acidic, humus-rich soils (Vrålstadt et al. 2000, 2001; Haug et al. 2004). Investigations are currently carried out to clarify if the fungal associate of G. emarginata is present in ericaceous plants and hepatics of the neotropical mountain forest. The latter could have served and still may serve as vectors for fungus distribution. The two Nyctaginaceen species Guapira sp. and Neea sp., positioned within a family that is mainly known from South America and contains mostly non-mycorrhizal plants (Brundrett 2002) have some ectomycorrhizal relatives in Peru (Neea sp.; Alexander and Högberg 1986), the Amazon forest near Manaus (Neea sp.; Singer 1979) and the Amazon valley in the south of Venezuela (Neea obovata, N. robusta, Guapira sancarlosiana; Moyersoen 1993). In the latter habitat all three species harbored arbuscular and ectomycorrhiza forming fungi and are large, dominating trees there. The ectomycorrhizal fungi connected to the trees in these habitats have not been identified, and it will be interesting to discover how close they are related to the Ecuadorian species. This knowledge could provide us with further information about the paleo-biogeography of the northern Andes, and may substantiate the hypothesis that lowland trees were more widely distributed in the Andes during the late Tertiary (van der Hammen & Cleef 1986; Taylor 1995). Guapira sp. and Neea sp. could by relicts from these times.
Acknowledgements
The research was generously supported by the German Science Foundation (DFG project FOR 402). We thank the Fundacíon Científica San Francisco for providing research facilities and the Universidad Técnica Particular de Loja (UTPL) for kind personal help and access to laboratories.
References
Alexander, I.J. & P. Högberg. 1986. Ectomycorrhizas of tropical angiospermous trees. The New Phytologist 102, 541-549
Brundrett, M.C. 2002. Coevolution of roots and mycorrhizas of land plants. New Phytologist 154: 275-304.
Feil, W.; I. Kottke & F. Oberwinkler. 1988. The effect of drought on mycorrhizal growth and very fine root systems of Picea abies (L.) Karst. under natural and experimental conditions. Plant and Soil 108: 221-231
Haug, I. 2002. Identification of Picea-ectomycorrhizas by comparing DNA-sequences. Mycological Progress 1: 167-178
Haug, I.; J. Homeier, F. Oberwinkler & I. Kottke. (submitted) Russulaceae and Thelephoraceae form ectomycorrhizas with members of the Nyctaginaceae (Caryophyllales) in the tropical mountain rain forest of southern Ecuador. New Phytologist
Haug I.; J. Lempe; J. Homeier; M. Weiß; S. Setaro; F. Oberwinkler & I. Kottke. 2004. Graffenrieda emarginata (Melastomataceae) forms mycorrhizas with Glomeromycota and with a member of Hymenoscyphus ericae aggr. in the organic soil of a neotropical mountain rain forest. Can. J. Bot. 82: 340-356
Haug, I. & K. Pritsch. (1992) Ectomycorrhizal types of spruce (Picea abies (L.) Karst.) in the Black Forest. A microscopical atlas. Kernforschungszentrum Karlsruhe, 89 S.
Homeier, J., H. Dalitz & S.W. Breckle. 2002. Waldstruktur und Baumdiversität im montanen Regenwald der Estación Cientifíca San Francisco in Südecuador. Berichte der Reinhessischen Tüxen-Gesellschaft 14: 109-118.
Janos, D.P. 1987. VA mycorrhizas in humid tropical ecosystems. In: Ecophysiology of VA Mycorrhizal Plants (ed. GR Safir) CRC Press, Boca Raton, Florida, USA pp. 107-134
Kottke, I. 2002. Mycorrhizae - Rhizosphere determinants of plant communities. In: Waisel Y, Eshel A, Kafkafi U (eds.) Plant Roots: The Hidden Half. 3rd ed. Marcel Dekker, Inc., p. 919-932
Kottke, I.; A. Beck; F. Oberwinkler; J. Homeier & D. Neill. 2004. Arbuscular endomycorrhizas are dominant in the organic soil of a neotropical montane cloud forest. J. Trop. Ecol. 20: 125-129
Kottke, I.; A. Beiter; M. Weiss; I. Haug; F. Oberwinkler & M. Nebel. 2003. Heterobasidiomycetes from symbiotic associations with hepatics: Jungermanniales have sebacinoid mycobionts while Aneura pinguis (Metzgeriales) is associated with a Tulasnella species. Mycol. Res. 107: 975-968
Kuhn, G.; M. Hijri & I.R. Sanders. 2001. Evidence for the evolution of multiple genomes in arbuscular mycorrhizal fungi. Nature 414: 745-748
Moyersoen, B. 1993 Ectomicorrizas y micorrizas vesículo-arbuculares en Caatinga Amazonica del Sur de Venezuela. Scientia Guaianae 3:, 83 pp. Caracas
Read, D.J. 1991. Mycorrhizas in ecosystems. Experientia 47: 376-390.
Read, D.J. 1993. Plant-microbe mutualism and community structure. in : Schulze DE, Mooney HA (eds.) Biodiversity and Ecosystem Function. Ecological Studies 99, Springer Verlag, pp. 181-209.
Read, D.J. & J. Perez-Morena. 2003. Mycorrhizas and nutrient cycling in ecosystems - a journey towards relevance? New Phytologist 157: 475-492.
Singer, R. & I. Araujo. 1979. Litter decomposition and ectomycorrhiza in amazonian forests. Acta Amazonica 9: 25-41.
Smith, S.E. & D.J. Read. 1997. Mycorrhizal Symbiosis. 2 nd ed., Academic Press, San Diego, London ect. ISBN 0-12-652840-3.
Taylor, D.W. 1995. Cretaceous to tertiary geology and angiosperm paleobiogeographic history of the Andes. In: Churchill S. P.; H. Balslev; E. Forero & J. L. Luteyn (eds.) Biodiversity and Conservation of Neotropical Montane Forests. New York Botanical Garden, Bronx, New York, pp. 3-9.
Van der Hammen, T. & A.M. Cleef. 1986. Development of the high Andean páramo flora and vegetation. In: Vuiffeummier T and Monasterio M (eds.) High-altitude Tropical Biogeographie. Oxford Universty Press, Oxford, pp. 153-200.
Vrålstad, T.; T. Fossheim & T. Schumacher. 2000. Piceirhiza bicolorata - the ectomycorrhizal expression of the Hymenoscyphus ericae aggregate? New Phytol. 145: 549-563
Vrålstad, T.; T. Schumacher & A.F. Taylor. 2001. Mycorrhizal synthesis between fungal strains of the Hymenoscyphus ericae aggregate and potential ectomycorrhizal and ericoid hosts. New Phytol. 153: 143-152.
Wilcke, W.; S. Yasin; U. Abramowski; C. Valarezo & W. Zech. 2001. Change in water quality during the passage through a tropical montane rain forest in Ecuador. Biogeochemistry 55: 45-72.
Wilcke, W.; S. Yasin; U. Abramowski; C. Valarezo & W. Zech. 2002. Nutrient storage and turnover in organic layers under tropical montane rain forest in Ecuador. European J Soil Science 53: 15-27
Table 1 Investigated tree species of the mountain rain forest in southern Ecuador: All species form mycorrhizas, those in bold form ectomycorrhizas ECM, the others form arbuscular mycorrhizas.
Table 1. Arboles Investigados en tres bosques lluviosos en el sur de Ecuador: Todas las especies forman micorrizas, las que estan en negrita forman ectomicorrizas ECM, las otras forman micorrizas arbusculares.
Family | Species | Family |
Species |
Alzateaceae | Alzatea verticillata | Meliaceae | Guarea cf. kunthiana |
Anacardiaceae | Tapirira guianensis |
|
Guarea pterorhachis |
|
Tapirira obtusa | Mimosaceae | Inga cf. acreana |
|
Campnosperma panamense |
|
Inga striata |
Annonaceae | Guatteria cf. recurvisepala | Monimiaceae | Siparuna aspera |
Aquifoliaceae | Ilex cf. amboroica | Moraceae | Coussapoa villosa |
Araliaceae | Dendropanax sp. |
|
Ficus cf. subandina |
|
Schefflera sp. |
|
Helicostylis tovarensis |
Arecaceae | Dictyocaryum lamarckianum |
|
Morus insignis |
|
Euterpe catinga Euterpe precatoria |
|
Naucleopsis glabra |
Asteraceae | Critoniopsis floribunda |
|
Pseudolmedia rigida |
|
Piptocoma discolor | Myrsinaceae | Myrsine coriaceae |
Bignoniaceae | Tabebuia chrysantha |
|
Myrsine latifolia |
Cecropiaceae | Cecropia gabrielis | Myrtaceae | Calyptranthes sp. |
Chloranthaceae | Hedyosmum anisodorum |
|
Eugenia sp. |
|
Hedyosmum goudotianum |
|
Eugenia valvata |
|
Hedyosmum translucidum |
|
Myrcia sp. |
Chrysobalanaceae |
Hirtella
cf. pilosissima |
|
Myrcianthes myrsinoides |
Clethraceae | Clethra revoluta | Nyctaginaceae | Guapira sp ECM Neea species (1) ECM Neea species (2) ECM |
Clusiaceae | Clusia sp. (2 species) | Piperaceae | Piper perareolatum |
|
Tovomita weddeliana |
|
Piper sp. (4 species indet.) |
|
Vismia tomentosa | Podocarpaceae | Podocarpus oleifolius |
Cunoniaceae | Weinmannia haenkeana |
|
Podocarpus sprucei |
|
Weinmannia pinnata |
|
Prumnopity montana |
|
Weinmannia pubescens | Quiinaceae | Quiina sp. |
|
Weinmannia spruceana | Rosaceae | Prunus opaca |
Cyrillaceae | Purdiaea nutans | Rubiaceae | Dioicodendron dioicum |
Elaeocarpaceae | Sloanea sp. |
|
Elaeagea
karstenii |
Euphorbiaceae | Alchornea cf. grandis |
|
Elaeagia pastoensis |
|
Alchornea pearcei |
|
Faramea glandulosa cf. uniflora |
|
Alchornea
sp. |
|
Faramea uncinata |
|
Hyeronima asperifolia |
|
Faramea
cf. uniflora |
|
Hyeronima cf. duquei |
|
Isertia laevis |
|
Hyeronima moritziana |
|
Ladenbergia oblongifolia |
|
Hyeronima cf. oblonga |
|
Macrocnemum cf. roseum |
Lauraceae | Aniba cf. muca |
|
Palicourea angustifolia |
|
Cinnamomum sp. |
|
Palicourea andaluciana |
|
Nectandra cf. acutifolia |
|
Palicourea canarina |
|
Nectandra crassiloba |
|
Palicourea luteonivea |
|
Nectandra lineatifolia |
|
Palicourea stenosepala |
|
Nectandra subbullata |
|
Psychotria sp. |
|
Ocotea
cf. aciphylla |
|
Psychotria tinctoria |
|
Ocotea benthamiana | Sabiaceae | Meliosma sp. |
Magnoliaceae | Talauma caricifragrans | Sapindaceae | Matayba sp. nov. |
Malpighiaceae | Byrsonima cf. putamayensis | Sapotaceae | Micropholis guyanensis |
Melastomataceae | Graffenrieda emarginata ECM |
|
Pouteria austin-smithii |
|
Meriana drakei | Solanaceae | Cestrum schlechtendahlii |
|
Meriana hexamera |
|
Solanum nutans |
|
Meriana rigida | Symplocaceae | Symplocos peruviana |
|
Meriana sp. nov. | Tiliaceae | Heliocarpus americanus |
|
Miconia cf. calophylla | Theaceae | Ternstroemia cf. jelskii |
|
Miconia crebribullata |
|
|
|
Miconia jahnii |
|
|
|
Miconia punctata |
|
|
|
Miconia rigida, Miconia theaezans |
|
|
10